103 views

If the vectors $e_1=(1,0,2)$, $e_2=(0,1,0)$ and $e_3=(-2,0,1)$ form an orthogonal basis of the three-dimensional real space $\mathbb{R}^3$, then the vector $\textbf{u}=(4,3,-3)\in \mathbb{R}^3 $ can be expressed as

- $\textbf{u}=-$$\large\frac{2}{5}$$e_1-3e_2-$$\large\frac{11}{5}$$e_3\\$
- $\textbf{u}=-$$\large\frac{2}{5}$$e_1-3e_2+$$\large\frac{11}{5}$$e_3 \\$
- $\textbf{u}=-$$\large\frac{2}{5}$$e_1+3e_2+$$\large\frac{11}{5}$$e_3 \\$
- $\textbf{u}=-$$\large\frac{2}{5}$$e_1+3e_2-$$\large\frac{11}{5}$$e_3$